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Until now quantum logics has been first-order, but physics requires higher-order 
logics. We construct a natural higher-order language Q for quantum physics. Q 
is a finitistic logic based on Peano set theory and Grassmann algebra. Higher- 
order predicates are identified with their extensions, higher-rank sets. QAND and 
QOR (the AND and OR of Q) are naturally noncommutative but reduce to the 
commutative lattice operations for the first-order part of the language. We form 
higher-order predicates and sets by a setting operator similar to Peano's i that 
forms a simple extensor z ~ = { ~} from any extensor ~. In a note added in proof, 
we correct Q so that a bond like {{a, fl}} between two fermions a and fl is a 
quasiboson, as the application to lattice chromodynamics strongly suggests. 

1. INTRODUCTION 

Perhaps it is time to attempt once more, as Leibniz did, to set up a 
universal formal language for physics. Here I propose the core of  such a 
language Called Q. Set theory may be regarded as a universal grammar or 
syntax for classical physics. Q provides set theory with a definite physical 
interpretation, so that it may be regarded as a language as well as a syntax, 
and revises it in the light of relativity and quantum theory. 

The work of yon Neumann suggests that the logical particles of  Q, the 
quantum equivalents of  AND, OR, NOT, and IF, should be those of an 
orthomodular lattice. While this suggestion has been stimulating, in fact the 
lattice language has been of little use as a way to express new physical 
theories. The language Q uses a logics that is closer to ordinary physical 
practice, more general than the yon Neumann lattice logics in some respects, 
and more special in others. 

Q is more general than lattice logics in that the Q operations correspond- 
ing to AND and OR, which I call QAND and QOR, are noncommutative as 
well as nondistributive, and nilpotent rather than idempotent, although they 
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reduce to orthomodular lattice operations in appropriate special cases. Q is 
an extensor algebra; not a lattice, but a noncommutative generalization of 
one; and not a poset, but a generalized poset with two related partial orders. 

To be sure, no choice of logical structure can be judged until the rest 
of the structure is provided, any more than one can judge a statue from the 
pedestal. A language needs something to go between its particles, like verbs 
or nouns. 

The standard language for mathematics is set theory, which supple- 
ments the above logical particles by an infinite set of nouns, the names of 
sets. Indeed, von Neumann spoke of his discovery not only as quantum 
logics but also "quantum set theory." 

There is urgent physical need for quantum set theory. A topology is a 
set of sets, and so presumably a quantum topology is a quantum set of 
quantum sets. Thus a quantum description of spacetime and its contents 
calls for a quantum theory of second-rank sets, or equivalently, second- 
order predicates. (Henceforth I use "order" both for sets and predicates.) 
Q includes a higher-order quantum set theory, which identifies quantum sets 
with Fermi-Dirac ensembles. 

While Q is built on verbs rather than nouns, these have close corre- 
spondences to the nouns of the usual set theory. 

2. EXTENSOR LOGICS 

Von Neumann (1932) arrived at lattice logics by abstraction from the 
subspaces of Hilbert space, which form the predicate of the empirical logic 
of quantum mechanics. The von Neumann logic of a quantum system is an 
algebra of the subspaces of its Hilbert space. 

Grassmann (1911 ) proposed a beautiful linear-algebraic theory of sub- 
spaces, called extensor algebra here, which is richer than von Neumann's. 
Q uses Grassmann's theory of subspaces rather than von Neumann's. Both 
may start from a quantum system S described in a Hilbert space V with a 
Hilbert isomorphism, to its dual space t V; I write operators to the left of 
their operands, even the operators t and _L. The alternative to the lattice 
L(V) of the space V is an extensor algebra E(V) over the same space. 

First let me sketch the structure and quantum application of 
Grassmann's extensor algebra E= E(V). The algebra E is not merely one 
exterior algebra (in the modern sense) but two, head to tail, with two inter- 
woven products corresponding to the two lattice operations. 

The fundamental elements of Grassmann's theory are called extensors 
(Ausdehnungen) and are elements of E. They are the simpler nontrivial words 
of the language Q and represent coherent uniform input operations (that is, 
input from experimenter to experimentee), which I call input vectors and 
write as (al or V or (Vn). 
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Let N be the dimension of the initial linear space V. Then E has a 
fundamental skew-symmetric N-ic form [ ~  . . .  ~,~r defining an invariant 
volume, called the Grassmann's form. I omit the technicalities of the exten- 
sion to N =  N0, which resembles Dirac's hole theory, and leads to a topology 
for the space of predicates quite different from Hilbert space. 

Dual extensors (never needed by Grassmann, I believe, but indispens- 
able for physics) represent outputs and are written Ifl( = ~b = (~bn). The value 
or contraction of a dual extensor ~b with an extensor ~, is written IP<al = 
~b(~,) =~b,~ ,~. The algebra E(V) is a Hilbert space like V, with addition + 
and multiplication by field elements having the usual quantum meanings. 
I envisage replacing the complex coefficients by integers in a later, more 
fundamental theory. 

Like a lattice, an extensor algebra E has two associative products, desig- 
nated by v (which will be our QOR, the quantum OR) and ^ (our QAND, 
the quantum AND). Grassmann named these the progressive and regressive 
products. Peirce's principle (that the inventor has the right to name the 
invention) forbids changing these terms. The Grassmann product usually 
designated by ^ in contemporary exterior algebra is actually v. 

The extensor algebra E(V) is graded, with grade, called degree (Stufe) 
by Grassmann, ranging from 0 to N, the dimension of V. This grade corre- 
sponds to  the cardinality of classical set theory, to the modulus of lattice 
theory, and to the multiplicity (degree of degeneracy) of energy levels of 
ordinary quantum parlance. 

Grassmann placed the greatest possible emphasis upon a dual symmetry 
between ^ and v expressed by a map _1_ : E(V) --* E(V) called complementa- 
tion (Erg~inzung) by Grassmann and called the Hodge dual nowadays, to 
the absurd extent of refusing to introduce distinct multiplication signs for 
the two products, relying instead on context to distinguish them. (The signs 
^ and v are due to Peano.) The Grassmann complement is our negation 
operation, the quantum NOT. It complements degree; if g has degree g, 
then _L g has degree N-g. Set theory breaks the Grassmann symmetry: the 
unit set {a} has degree 1, not N -  I. 

I assume also an antilinear degree-preserving anti-isomorphism desig- 
nated by t from E(V) to its dual space tE(V).  This t is the Hilbert t 
operator of E induced by the Hilbert t operator of V, and interchanges ^ 
and v. The Hilbert norm of an extensor ~ is written l[ g [I = t g(~) .  I mention 
without detail that in the application to relativistic functional quantum 
theory, t is not an invariant fixed element of structure, but instead is but 
one of an infinite class of t 's all on the same footing, while the Grassmann 
form, progressive product, and sum in E are invariant concepts even in the 
relativistic case. 

The Hilbert dual and Grassmann complement operators t and _k 
uniquely determine each other. They are the same element of structure 
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expressed in different terms. The Hilbert dual t V outputs the same kind of 
quantum that 9' inputs, while the Grassmann complement s V inputs every 
kind of quantum but the ones that V inputs. 

Extensors have three ascending levels of generality relative to a given 
basis fl for V: 

�9 Extensors which are products of basis vectors of fl are called basic. 
�9 Those which are products of vectors are called simple. 
�9 Those which are not simple are called compound; Grassmann called 

them imaginary. 

We designate the ray of extensor V by [9']. I f  [V] = [Z], we write V - Z  
and say that V is projectively equal to Z. We call the ray [V] basic, simple, 
or compound as we do the vector V. The term basic also applies to subspaces 
of V, those which are spans of basis vectors of the basis ft. Extensors V and 
~b are called disjoint when V ^ q~= 0. 

Now the correspondence to the usual lattice logics can be stated: 

Classical Logics 

For disjoint basic rays in E(V), the natural operations induced by v, 
^,  and _L are isomorphic to the Boolean operations t_), c~, and -7 on the 
subsets of ft. This is c logic. 

Classical-Quantum Logics 

For disjoint simple rays the same operations agree with those of an 
orthomodular complemented lattice, the usual lattice of subspaces of V. In 
particular, simple extensors commute projectively: V v Z - Z  v V. This is cq 
logic. 

Quantum Logics 

For disjoint general rays these operations do not agree with those of a 
lattice, since compound extensors need not commute projectively. This is q 
logic. 

Thus extensor logics is a proper noncommutative generalization of the 
von Neumann lattice logics, which is a proper nondistributive generalization 
of Boolean algebra. 

3. INTERPRETATION 

To understand and justify this extension of quantum logics, it is helpful 
to recall a certain systematic difference between the way Heisenberg and 
Bohr interpret quantum input-output (io) vectors and the way that Born 
and yon Neumann do. 
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For background, we first recall a similar difference between two con- 
cepts of a heat reservoir R in statistical thermodynamics, the individual and 
the statistical: 

�9 We can think of R as an arbitrary large body in thermal equilibrium 
with the individual system S. 

�9 Or we can represent R as a standard heat reservoir, namely a large 
ensemble of systems identical to S. 

The two interpretations, individual and statistical, respectively, are 
expected to be physically equivalent. Schr6dinger (in his statistical thermo- 
dynamics) adopts the statistical representation of the heat reservoir because 
it is definite, uniform, and simple. 

Similarly, we can think of an input vector ~b in two physically equivalent 
ways, individual (the Bohr-Heisenberg interpretation) and statistical (the 
Born-von Neumann interpretation). Either: 

�9 Each vector q~ represents an equivalence class of ways of preparing 
the individual quantum system S, as in the classic operational interpretations 
of Ludwig and of Foulis and Randall, for example. 

�9 Or the vector ~b represents one standard way of preparing the individ- 
ual quantum system; namely, it represents a large ensemble of systems iso- 
morphic in structure to S, from which we select S at random. Briefly, ~b 
describes a set of S's. 

Again the statistical representation of an input operation is simpler and 
more definite than the individual interpretation, and we adopt it. But there 
are more sets of quanta than yon Neumann envisaged. 

Since a set of S's is exactly a Fermi-Dirac ensemble of S's, and Fermi- 
Dirac ensembles are described by multivectors (skew tensors), we may spec- 
ify a set of S's by a multivector. In the presence of the Hilbert inner product, 
which defines the complement operation, a multivector is also an extensor. 

It is simple to imbed the yon Neumann lattice logics within the extensor 
logics. Each element of the von Neumann lattice logics is a subspace, and 
may be represented by the simple extensor formed by v-multiplying the 
vectors in a basis for the subspace. The lattice order [~b ] c [~] for the rays 
of simple extensors ~b and ~, holds, by definition, when for some extensor 
X, ~,=,~ v ~. 

In addition there are compound extensors. Grassmann had no meaning 
for these precisely because they do not represent subspaces. They represent 
quantum superpositions of preparations described by subspaces, and repre- 
sent preparations of S not envisaged by yon Neumann. 

For example, extensors of degree 1 represent "pure states" in the yon 
Neumann logics, while those of degree 2 represent "mixed states," mixtures 
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of two degree-1 inputs. The idea of a coherent superposition of a first-degree 
input with a second-degree one, or of two second-degree inputs, does not 
occur in the von Neumann quantum logics, but is routine in extensor logics. 

An interpretation of an input vector is an experimental input operation 
described by the vector. It is not difficult to design physical input operations 
to go with these theoretical ones. We may carry out such an operation in 
two steps: We form a coherent superposition of ensemble vectors, and then 
extract a member of the resulting ensemble. 

�9 To form a coherent superposition of a one-fermion and two-fermion 
input, to be sure, violates the Wick-Wightman-Wigner statistics superselec- 
tion law, and may present some extra difficulty. But nothing prevents the 
formation of coherent superpositions of two degree-2 input vectors; for 
example, a di-fermion of spin S=  1 may be resolved by a Stern-Gerlach 
operation into a coherent superposition of vectors with z component of spin 
S~. = 1, 0, and -1 .  

�9 The operation of extracting one member of an ensemble at random 
may be approximated by a stripping reaction, where a projectile combines 
with one particle of a target and carries it off. We must carry out the stripping 
operation on the contents of the target region without determining the con- 
tents more precisely than by  the prior preparation. 

The duals to these input operations are output operations. I omit their 
physical description here. 

The yon Neumann logics could describe this input operation by a statist- 
ical operator in the single-fermion Hilbert space. This would lose phase 
information that is retained in the extensor description. The extensor logics 
is a proper extension of the von Neumann quantum logics in that its single- 
fermion experiments are not described by the usual quantum theory of the 
single fermion. (They may, to be sure, be described within the yon Neumann 
logics of the many-fermion ensemble. However, the extensor logics of the 
many-fermion ensemble is richer still.) 

There is also a gain in simplicity. The von Neumann logics describe 
predicates and sets of electrons by different algebras, lattices and exterior 
algebras, respectively. This is alien to classical logics, where (hereditarily 
finite) predicates and sets are isomorphic, the sets being the extensions of 
the predicates. Here we represent both quantum predicates and quantum 
sets by the same extensor algebras, restoring extensionality. 

4. HIGHER-ORDER QUANTUM LOGICS 

So much for the first-order predicate algebra. We now discuss the 
higher-order quantum predicate algebra. This theory is still somewhat spec- 
ulative, and is directed toward theories of quantum spacetime that are not 
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yet connected with experiment; but the formal indications for the higher- 
order theory is so strong that I am sure it is along the right track. 

Classical Construction 

In general if V is regarded as a predicate, then { V} is a predicate of 
predicates, holding only for the predicate V. If  V is interpreted as a set, then 
{Vt} represents a set of sets and its sole element is V. 

For simplicity I limit attention to pure set theory, with no proper ele- 
ments. There is only one first-order predicate 1, the null predicate. In classical 
logics we apply a bracket to the first-order predicate 1 to construct a second- 
order predicate { 1 } ; then { 1 } represents the property of being the predicate 
1. If  the predicates of order _<N make up the Boolean algebra B N, then their 
brackets generate a Boolean algebra B N + I made up of  predicates of order 
_<N+ 1. 

Following Peano, I designate {V} by iV;  we used Q V  for tV  in 
Finkelstein et aL (1979) before we knew of Peano's work (Q standing for 
"quantized" or "quantified," because Q V  belongs to the "second quantized" 
or quantified theory). 

If  V . . . . .  Z are all distinct predicates of order <N, then 

{ I V , - ' - , Z }  = i V  v "  �9 �9 v t,,T ( 1 )  

has order < N +  1. More generally, we form the class B N +1 of all predicates 
of order < N +  I by applying t to all the elements of B N [calling the set of 
all these l-images I'(BN)] and then closing t ' (B  N) under the operations ^,  
v, and 1 :  

B N + 1 (S) = closure(l'(B N) 

This process is iterated to form sets of any finite order R, involving up 
to R nesting brackets or consecutive ds. These are all described in one set 
theory S, built from the null set 1. The elements of S are generated from 1 
by finite numbers of the operations v, ^,  s  and z, subject to familiar 
identities. 

Quantum Construction 

The beauty of the extensor logics is that it provides these classical 
procedures with close parallels in the quantum theory. Heuristically speak- 
ing, we do to basis vectors of a vector space V what is classically done to 
points of a possibility space or phase space S. For example, the extensor 
algebra E(V) is the quantum correspondent of the Boolean algebra B ( S ) .  

The quantum l applied to the unit extensor 1 (which represents the null 
set or predicate) gives a new second-order extensor z 1. In general, from the 
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extensors of order N we form those of order N +  1 by bracketing (applying 
t) and closing under the extensor operations ^, v, .L, 1. Call this process 
E. By iterating we form sets of  all orders ER(1); the least value of R for 
which ER(1) contains an extensor ~' is called the order of ~. The union 
of  the ER(1) is an infinite-dimensional extensor algebra E~~ The basic 
extensors of E~ are generated from 1 by finite numbers of the operations 
v, A, --1, and I subject to familiar identities. Every basic extensor of E~176 
is either of  finite degree or finite codegree. 

In the quantum theory we form a Hilbert space Q from the extensor 
algebra E~176 in a routine way. There is a natural Hilbert norm on E~176 
Closure of E~(1) with respect to that norm yields the Hilbert space Q. 

The operator t raises order and its Hermitian adjoint 

h : :  t ~t (2) 

lowers order. We may normalize ! so that it obeys the familiar Bose-Einstein 
relation 

t l l  - -  I t l  = 1 

which also holds between the differential operators d/dx and x. This does 
not affect the action of z on basic rays, which must agree with classical set 
theory. 

For sets of the special form ('1, which Peano identified with the integers, 
the operator 

R := l tz (3) 

is precisely the order operator. In general, an eigenvector of R with eigen- 
value r has the form tra, where a is not of the form lfl. We call the operator 
R the rank. 

The physical need for the bracket and r arises in quantum mechanics 
and field quantum field theory when we must couple dynamical variables 
with spacetime points to define trajectories or fields. As long as spacetime is 
a classical set it is possible and customary to use the classical bracket to 
couple variables with coordinates. I f  spacetime is a quantum set (which is a 
Fermi-Dirac ensemble, we recall) then we might use the quantum bracket 
for this purpose, to do quantum field theory on quantum spacetime. 

I do not advocate this use of the bracket, which copies classical field 
theories too literally. The main field theory is gravity, which describes the 
causal connection. In the quantum case, it is more natural to use the bracket 
to couple spacetime points directly to each other, and so to describe the 
causal connection by a network rather than  a field. With the network as 
dynamical variable there is no fundamental need for fields. This approach 
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was attempted in Finkelstein (1989) and is still under study. It is the main 
motivation for Q. 

5. QUANTIFIERS 

Physicists have dealt with quantifcation in quantum logics elegantly 
since quite early in the development of quantum theory. If fie V describes 
one fermion, so that an ensemble is described by an extensor WeE(V), then 
in physics one uses the numerical quantifier N(fi) (for "the number of 
fermions of the kind fi," also called the occupation number operator) in 
preference to the Aristotelean quantifiers V ("for every fermion") and ~ ("for 
some fermion"). N(fi) is a linear operator on E(V) -* E(V) defined in Q as 
follows. 

Let us write fi" for the linear operator on extensors of left v-multiplica- 
tion by fi; for all q/, xeE(V), 

fi"X := fi v Z eE(V)  (4) 

This fir is a creation operator. Similarly we write fi^ for left ,x-multiplica- 
tion by fi. We would designate the corresponding right multiplications by 
vfi and ^q/. 

The Hermitian adjoint 1"fivt =: t(fi~) is an annihilation operator, and 
is identical with (1  fi)^, left ^-multiplication by _Lfi. (I thank G.-C. Rota 
for pointing this out.) 

Let us normalize fi to 1. Then fi and tfi obey "canonical anticommuta- 
tion relations" and one defines the number operator N(fi) by 

N(fi) := fi*V' (5) 

For every normalized fit, N(fi) is a positive linear operator mapping 
E(V) ~ E(V) with eigenvalues N' = 0, 1. 

The eigenvectors of N( f i )  belonging to eigenvalue N ' - '  0, 1 are the 
homogeneous extensors of degree N'  in fi. Those with N' = 1 are of the form 
fi v a for some a ; those with N' = 0 lack any factor of fi and are annihilated 
by t ~. Thus N(~t) agrees with the classical notion of the number of fi's. 

In some applications we may dispense with variables in our predicate 
logic. Free variables are metalinguistic conveniences, since expressions with 
free variables have no meaning in the object language. If bound variables 
stand for the system under study, and there is only one of these, then its 
symbol may be taken as read, and we may write VP instead of VxP(x), and 
3P instead of 3xP(x). Often in this context 3P is written [..) P and VP is 
written N P. 
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The classical (finite) existential operator g : s - - ,  s is defined by the 
condition that 

U [ { v } ] = v ,  g [ v w z ] = U ~ w U z  (6) 

Similarly, we might wish to define the extensor existential operator 
V :  Q --* Q by the condition that it be linear and for simple extensors obey 

V [{v,}l=v, Vtvvzl=V v,,,Vz (7) 
If either V or Z has even degree, however, this leads to the unexpected result 

V [{v,} v {x } l=  vz  =z v v ,=V [{z} v 

= - V  [{v,},, {z}]=o (8) 
This result stems from the difference between the statistics of  V (quasi- 

Bose if V is of  even degree) and l V (Fermi in every case), or the fact that t 
is a superoperator (mixes statistics). What corresponds better than the input 
extensor V to a classical unit predicate {0/} in this respect is the extensor 
{ V } v { I" V } = P( V)- Because P(V ) has even degree, 

V [P(v) vP(z ) ]=vv~vvz  v~z=z vt;z v v v t v  

= V [P(z)  v e ( v ) ]  (9) 

The numerical quantifier N(V) is also an existential quantifier V in set 
theory, where N has the spectrum 0, 1. The existential operator is a kind of  
inverse to ~. 

The existential and universal quantifier are related by 

A = _.L V / (10) 

These may be the best that one can do in Q. 

6. FUNCTIONS 

While the language of  set theory generates its infinite family of nouns 
with ease and elegance, it is deficient in verbs. It has a small supply of  
constant verbs ( "= , "  '%," . . . )  and no variable ones. The simplest mapping, 
function, or arrow, the ordered pair (a ~ fl), representing an operation that 
transforms a into fl, creates insuperable problems for set theory. The usual 
expression for (a ~ fl) is the set {a} u {{a} w {fl}}. This choice is lame and 
gratuitous; it could just as well represent the arrow (fl ~ a),  for example. 
(For all I know it does; I have not looked up the standard convention, since 
we will not use it.) Functions act but sets do nothing, and certainly do not 
act on other sets; they simply are. 
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This was recognized by von Neumann, for example, when he provided 
his variant of set theory. He took the function concept as primitive and 
defined sets in terms of functions, instead of attempting the converse. His 
system was too awkward to be practical, however; largely because it pre- 
ceded the practice of quantum physics, which provides a working model of 
how operations should be expressed in a formal language. 

In Q the Hilbert dual t ~  is the elemental partial map ~, ~ e. It is then 
routine to express general mappings, partial mappings, and multivalued 
mappings as elements of the enlarged extensor algebra Q('~) formed from 1 
by iterating the operations ^, v, _1_, I", and linear combination. 

Takeuti (1981) has also put forward a quantum set theory. The two 
QSTs are supplementary and may be amalgamated. Takeuti's QST is a 
theory of sets of quantum variables of a single quantum system, based on 
an arbitrary prespecified Hilbert space, and does not identify sets with 
Fermi-Dirac ensembles; while Q is a theory of sets of quantum systems, 
generates a new Hilbert space, and identifies sets with Fermi• 
ensembles. I benefited greatly from Takeuti's work. More recently, the 
insights of Barnabei et al. (1985) on the thought of Grassmann and Peano 
have been influential. 

NOTE ADDED IN PROOF 

In this work and in D. Finkelstein and W. Hallidy, Q: A language for 
quantum-spacetime topology, International Journal of Theoretical Physics, 
30, 1991 we identified cardinality (the number of prime factors in'a v -  
product) with grade (in the sense of graded algebra), assuming that all prime 
factors had grade 1. Then t violates grade. This made it impossible to form 
quasibosons. Even if a and fl are fermions of grade 1, so that a v fl has 
grade 2, the set y = t(a v fl) again had cardinality 1 and therefore grade 1. 
But we wish to use Q in q topology and q network gauge theory. There 9' is 
a topological link between a and fl, and should be a quasiboson, of even 
grade, not a fermion. We have now found a more natural form of Q where 
~, is a quasiboson. Now the setting-operator t preserves grade. This also 
eliminates the paradox of equation (8). I am grateful to J. M. Gibbs, M. 
Kolodner, W. J. Mantke, and F. (T.) Smith for discussions. 
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